Lesson No.21

Interrupts

Interrupts in reality are events that occurred outside the processor and the processor must be informed about them. Interrupts are asynchronous and unpredictable. Asynchronous means that the interrupts occur, independent of the working of the processor, i.e. independent of the instruction currently executing. Synchronous events are those that occur side by side with another activity. Interrupts must be asynchronous as they are generated by the external world which is unaware of the happenings inside the processor. True interrupts that occur in real time are asynchronous with the execution. Also it is unpredictable at which time an interrupt will come. The two concepts of being unpredictable and asynchronous are overlapping. Unpredictable means the time at which an interrupt will come cannot be predicted, while asynchronous means that the interrupt has nothing to do with the currently executing instruction and the current state of the processor.

The 8088 processor divides interrupts into two classes. Software interrupts and hardware interrupts. Hardware interrupts are the real interrupts generated by the external world as discussed above. Software interrupts on the contrary are not generated from outside the processor. They just provide an extended far call mechanism. Far all allows us to jump anywhere in the whole megabyte of memory. To return from the target we place both the segment and offset on the stack. Software interrupts show a similar behavior. It however pushes one more thing before both the segment and offset and that is the FLAGS register. Just like the far call loads new values in CS and IP, the interrupt call loads new values in CS, IP, and FLAGS. Therefore the only way to retain the value of original FLAGS register is to push and pop as part of interrupt call and return instructions. Pushing and popping inside the routine will not work as the routine started with an already tampered value.

The discussion of real time interrupts is deferred till the next chapter. They play the critical part in control applications where external hardware must be control and events and changes therein must be appropriately responded by the processor. To generate an interrupt the INT instruction is used. The routine that executes in response to an INT instruction is called the interrupt service routine (ISR) or the interrupt handler. Taking example from real time interrupts the routine to instruct an external hardware to close the valve of a boiler in response to an interrupt from the pressure sensor is an interrupt routine.

The software interrupt mechanism in 8088 uses vectored interrupts meaning that the address of the interrupt routine is not directly mentioned in an interrupt call, rather the address is lookup up from a table. 8088 provides a mechanism for mapping interrupts to interrupt handlers. Introducing a new entry in this mapping table is called hooking an interrupt.

Syntax of the INT instruction is very simple. It takes a single byte argument varying from 0-255. This is the interrupt number informing the processor, which interrupt is currently of interest. This number correlates to the interrupt handler routine by a routing or vectoring mechanism. A few interrupt numbers in the start are reserved and we generally do not use them. They are related to the processor working. For example INT 0 is the divide by zero interrupt. A list of all reserved interrupts is given later. Such interrupts are programmed in the hardware to generate the designated interrupt when the specified condition arises. The remaining interrupts are provided by the processor for our use. Some of these were reserved by the IBM PC designers to interface user programs with system software like DOS and BIOS. This was the logical choice for them as interrupts provided a very flexible architecture. The remaining interrupts are totally free for use in user software.

The correlation process from the interrupt number to the interrupt handler uses a table called interrupt vector table. Its loation is fixed to physical memory address zero. Each entry of the table is four bytes long containing the segment and offset of the interrupt routine for the corresponding interrupt number. The first two bytes in the entry contain the offset and the next two bytes contain the segment. The little endian rule of putting the more significant part (segment) at a higher address is seen here as well. Mathematically offset of the interrupt n will be at nx4 while the segment will be at nx4+2. One entry in this table is called a vector. If the vector is changed for interrupt 0 then INT 0 will take execution to the new handler whose address is now placed at those four bytes. INT 1 vector occupies location 4, 5, 6, and 7 and similarly vector for INT 2 occupies locations 8, 9, 10, and 11. As the table is located in RAM it can be changed anytime. Immediately after changing it the interrupt mapping is changed and now the interrupt will result in execution of the new routine. This indirection gives the mechanism extreme flexibility.

The operation of interrupt is same whether it is the result of an INT instruction (software interrupt) or it is generated by an external hardware which passes the interrupt number by a different mechanism. The currently executing instruction is completed, the current value of FLAGS is pushed on the stack, then the current code segment is pushed, then the offset of the next instruction is pushed. After this it automatically clears the trap flag and the interrupt flag to disallow further interrupts until the current routine finishes. After this it loads the word at nx4 in IP and the word at nx4+2 in CS if interrupt n was generated. As soon as these values are loaded in CS and IP execution goes to the start of the interrupt handler. When the handler finishes its work it uses the IRET instruction to return to the caller. IRET pops IP, then CS, and then FLAGS. The original value of IF and TF is restored which reenables further interrupts. IF and TF will be discussed in detail in the discussion of real time interrupts. We have discussed three things till now.

1. The INT and IRET instruction format and syntax

2. The formation of IVT (interrupt vector table)

3. Operation of the processor when an interrupt in generated

Just as discussed in the subroutines chapter, the processor will not match interrupt calls to interrupt returns. If a RETF is used in the end of an ISR the processor will still return to the caller but the FLAGS will remain on the stack which will destroy the expectations of the caller with the stack. If we know what we are doing we may use such different combination of instructions. Generally we will use IRET to return from an interrupt routine. Apart from indirection the software interrupt mechanism is similar to CALL and RET. Indirection is the major difference.

· The operation of INT can be written as:

· sp ← sp+2

· [sp] ← flag
· sp ← sp+2

· if ← 0
· tf ← 0
· [sp] ← cs
· sp ← sp+2

· [sp] ← ip

· ip ← [0:N*4]

· cs ← [0:N*4+2]

 The operation of IRET can be written as:

· ip ← [sp]

· sp ← sp-2

· cs ← [sp]

· sp ← sp-2

· flag ← [sp]
· sp ← sp-2

The above is the microcode description of INT and IRET. To obey an assembly language instruction the processor breaks it down into small opertions. By reading the microcode of an instruction its working can be completely understood.
The interrupt mechanism we have studied is an extended far call mechanism. It pushes FLAGS in addition to CS and IP and it loads CS and IP with a special mechanism of indirection. It is just like the table of contents that is located at a fixed position and allows going directly to chapter 3, to chapter 4 etc. If this association is changed in the table of contents the direction of the reader changes. For example if Chapter 2 starts at page 220 while 240 is written in the table of contents, the reader will go to page 240 and not 220. The table of contents entry is a vector to point to map the chapter number to page number. IVT has 256 chapters and the interrupt mechanism looks up the appropriate chapter number to reach the desired page to find the interrupt routine.

Another important similarlity is that table of contents is always placed at the start of the book, a well known place. Its physical position is fixed. If some publishers put it at some place, others at another place, the reader will be unable to find the desired chapter. Similarly in 8088 the physical memory address zero is fixed for the IVT and it occupies exactly a kilobyte of memory as the 256x4=1K where 256 is the number of possible interrupt vectors while the size of one vector is 4 bytes.
